Vulnerabilities (CVE)

Join the Common Vulnerabilities and Exposures (CVE) community and start to get notified about new vulnerabilities.

Filtered by vendor Kubernetes Subscribe
Total 70 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2019-11250 2 Kubernetes, Redhat 2 Kubernetes, Openshift Container Platform 2020-10-16 3.5 LOW 6.5 MEDIUM
The Kubernetes client-go library logs request headers at verbosity levels of 7 or higher. This can disclose credentials to unauthorized users via logs or command output. Kubernetes components (such as kube-apiserver) prior to v1.16.0, which make use of basic or bearer token authentication, and run at high verbosity levels, are affected.
CVE-2019-11248 1 Kubernetes 1 Kubernetes 2020-10-05 6.4 MEDIUM 8.2 HIGH
The debugging endpoint /debug/pprof is exposed over the unauthenticated Kubelet healthz port. The go pprof endpoint is exposed over the Kubelet's healthz port. This debugging endpoint can potentially leak sensitive information such as internal Kubelet memory addresses and configuration, or for limited denial of service. Versions prior to 1.15.0, 1.14.4, 1.13.8, and 1.12.10 are affected. The issue is of medium severity, but not exposed by the default configuration.
CVE-2019-11254 1 Kubernetes 1 Kubernetes 2020-10-02 4.0 MEDIUM 6.5 MEDIUM
The Kubernetes API Server component in versions 1.1-1.14, and versions prior to 1.15.10, 1.16.7 and 1.17.3 allows an authorized user who sends malicious YAML payloads to cause the kube-apiserver to consume excessive CPU cycles while parsing YAML.
CVE-2019-11253 2 Kubernetes, Redhat 2 Kubernetes, Openshift Container Platform 2020-10-02 5.0 MEDIUM 7.5 HIGH
Improper input validation in the Kubernetes API server in versions v1.0-1.12 and versions prior to v1.13.12, v1.14.8, v1.15.5, and v1.16.2 allows authorized users to send malicious YAML or JSON payloads, causing the API server to consume excessive CPU or memory, potentially crashing and becoming unavailable. Prior to v1.14.0, default RBAC policy authorized anonymous users to submit requests that could trigger this vulnerability. Clusters upgraded from a version prior to v1.14.0 keep the more permissive policy by default for backwards compatibility.
CVE-2019-11249 2 Kubernetes, Redhat 2 Kubernetes, Openshift Container Platform 2020-10-02 5.8 MEDIUM 6.5 MEDIUM
The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.13.9, versions prior to 1.14.5, versions prior to 1.15.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12.
CVE-2019-11247 2 Kubernetes, Redhat 2 Kubernetes, Openshift Container Platform 2020-10-02 6.5 MEDIUM 8.1 HIGH
The Kubernetes kube-apiserver mistakenly allows access to a cluster-scoped custom resource if the request is made as if the resource were namespaced. Authorizations for the resource accessed in this manner are enforced using roles and role bindings within the namespace, meaning that a user with access only to a resource in one namespace could create, view update or delete the cluster-scoped resource (according to their namespace role privileges). Kubernetes affected versions include versions prior to 1.13.9, versions prior to 1.14.5, versions prior to 1.15.2, and versions 1.7, 1.8, 1.9, 1.10, 1.11, 1.12.
CVE-2019-11246 1 Kubernetes 1 Kubernetes 2020-10-02 4.3 MEDIUM 6.5 MEDIUM
The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11.
CVE-2019-11244 3 Kubernetes, Netapp, Redhat 3 Kubernetes, Trident, Openshift Container Platform 2020-10-02 1.9 LOW 5.0 MEDIUM
In Kubernetes v1.8.x-v1.14.x, schema info is cached by kubectl in the location specified by --cache-dir (defaulting to $HOME/.kube/http-cache), written with world-writeable permissions (rw-rw-rw-). If --cache-dir is specified and pointed at a different location accessible to other users/groups, the written files may be modified by other users/groups and disrupt the kubectl invocation.
CVE-2019-11243 2 Kubernetes, Netapp 2 Kubernetes, Trident 2020-10-02 4.3 MEDIUM 8.1 HIGH
In Kubernetes v1.12.0-v1.12.4 and v1.13.0, the rest.AnonymousClientConfig() method returns a copy of the provided config, with credentials removed (bearer token, username/password, and client certificate/key data). In the affected versions, rest.AnonymousClientConfig() did not effectively clear service account credentials loaded using rest.InClusterConfig()
CVE-2019-9946 3 Cncf, Kubernetes, Netapp 3 Portmap, Kubernetes, Cloud Insights 2020-08-24 5.0 MEDIUM 7.5 HIGH
Cloud Native Computing Foundation (CNCF) CNI (Container Networking Interface) 0.7.4 has a network firewall misconfiguration which affects Kubernetes. The CNI 'portmap' plugin, used to setup HostPorts for CNI, inserts rules at the front of the iptables nat chains; which take precedence over the KUBE- SERVICES chain. Because of this, the HostPort/portmap rule could match incoming traffic even if there were better fitting, more specific service definition rules like NodePorts later in the chain. The issue is fixed in CNI 0.7.5 and Kubernetes 1.11.9, 1.12.7, 1.13.5, and 1.14.0.
CVE-2019-11255 2 Kubernetes, Redhat 4 External-provisioner, External-resizer, External-snapshotter and 1 more 2020-08-10 5.5 MEDIUM 6.5 MEDIUM
Improper input validation in Kubernetes CSI sidecar containers for external-provisioner (<v0.4.3, <v1.0.2, v1.1, <v1.2.2, <v1.3.1), external-snapshotter (<v0.4.2, <v1.0.2, v1.1, <1.2.2), and external-resizer (v0.1, v0.2) could result in unauthorized PersistentVolume data access or volume mutation during snapshot, restore from snapshot, cloning and resizing operations.
CVE-2020-8553 1 Kubernetes 1 Ingress-nginx 2020-08-04 4.9 MEDIUM 5.9 MEDIUM
The Kubernetes ingress-nginx component prior to version 0.28.0 allows a user with the ability to create namespaces and to read and create ingress objects to overwrite the password file of another ingress which uses nginx.ingress.kubernetes.io/auth-type: basic and which has a hyphenated namespace or secret name.
CVE-2019-11252 1 Kubernetes 1 Kubernetes 2020-07-28 5.0 MEDIUM 6.5 MEDIUM
The Kubernetes kube-controller-manager in versions v1.0-v1.17 is vulnerable to a credential leakage via error messages in mount failure logs and events for AzureFile and CephFS volumes.
CVE-2019-14891 3 Fedoraproject, Kubernetes, Redhat 3 Fedora, Cri-o, Openshift Container Platform 2020-02-28 6.0 MEDIUM 5.0 MEDIUM
A flaw was found in cri-o, as a result of all pod-related processes being placed in the same memory cgroup. This can result in container management (conmon) processes being killed if a workload process triggers an out-of-memory (OOM) condition for the cgroup. An attacker could abuse this flaw to get host network access on an cri-o host.
CVE-2019-1002101 2 Kubernetes, Redhat 2 Kubernetes, Openshift Container Platform 2020-02-10 5.8 MEDIUM 5.5 MEDIUM
The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes creates a tar inside the container, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. The untar function can both create and follow symbolic links. The issue is resolved in kubectl v1.11.9, v1.12.7, v1.13.5, and v1.14.0.
CVE-2019-11251 1 Kubernetes 1 Kubernetes 2020-02-06 4.3 MEDIUM 5.7 MEDIUM
The Kubernetes kubectl cp command in versions 1.1-1.12, and versions prior to 1.13.11, 1.14.7, and 1.15.4 allows a combination of two symlinks provided by tar output of a malicious container to place a file outside of the destination directory specified in the kubectl cp invocation. This could be used to allow an attacker to place a nefarious file using a symlink, outside of the destination tree.
CVE-2018-1002104 1 Kubernetes 1 Nginx Ingress Controller 2020-01-16 5.0 MEDIUM 5.3 MEDIUM
Versions < 1.5 of the Kubernetes ingress default backend, which handles invalid ingress traffic, exposed prometheus metrics publicly.
CVE-2018-1002102 2 Fedoraproject, Kubernetes 2 Fedora, Kubernetes 2020-01-16 2.1 LOW 2.6 LOW
Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet.
CVE-2019-10223 3 Kubernetes, Linux, Redhat 3 Kube-state-metrics, Linux Kernel, Openshift Container Platform 2019-11-29 4.0 MEDIUM 6.5 MEDIUM
A security issue was discovered in the kube-state-metrics versions v1.7.0 and v1.7.1. An experimental feature was added to the v1.7.0 release that enabled annotations to be exposed as metrics. By default, the kube-state-metrics metrics only expose metadata about Secrets. However, a combination of the default `kubectl` behavior and this new feature can cause the entire secret content to end up in metric labels thus inadvertently exposing the secret content in metrics. This feature has been reverted and released as the v1.7.2 release. If you are running the v1.7.0 or v1.7.1 release, please upgrade to the v1.7.2 release as soon as possible.
CVE-2018-1002103 1 Kubernetes 1 Minikube 2019-10-09 6.8 MEDIUM 8.8 HIGH
In Minikube versions 0.3.0-0.29.0, minikube exposes the Kubernetes Dashboard listening on the VM IP at port 30000. In VM environments where the IP is easy to predict, the attacker can use DNS rebinding to indirectly make requests to the Kubernetes Dashboard, create a new Kubernetes Deployment running arbitrary code. If minikube mount is in use, the attacker could also directly access the host filesystem.