Total
121 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2019-14439 | 6 Apache, Debian, Fasterxml and 3 more | 18 Drill, Debian Linux, Jackson-databind and 15 more | 2023-02-28 | 5.0 MEDIUM | 7.5 HIGH |
A Polymorphic Typing issue was discovered in FasterXML jackson-databind 2.x before 2.9.9.2. This occurs when Default Typing is enabled (either globally or for a specific property) for an externally exposed JSON endpoint and the service has the logback jar in the classpath. | |||||
CVE-2021-3450 | 9 Fedoraproject, Freebsd, Mcafee and 6 more | 34 Fedora, Freebsd, Web Gateway and 31 more | 2023-02-28 | 5.8 MEDIUM | 7.4 HIGH |
The X509_V_FLAG_X509_STRICT flag enables additional security checks of the certificates present in a certificate chain. It is not set by default. Starting from OpenSSL version 1.1.1h a check to disallow certificates in the chain that have explicitly encoded elliptic curve parameters was added as an additional strict check. An error in the implementation of this check meant that the result of a previous check to confirm that certificates in the chain are valid CA certificates was overwritten. This effectively bypasses the check that non-CA certificates must not be able to issue other certificates. If a "purpose" has been configured then there is a subsequent opportunity for checks that the certificate is a valid CA. All of the named "purpose" values implemented in libcrypto perform this check. Therefore, where a purpose is set the certificate chain will still be rejected even when the strict flag has been used. A purpose is set by default in libssl client and server certificate verification routines, but it can be overridden or removed by an application. In order to be affected, an application must explicitly set the X509_V_FLAG_X509_STRICT verification flag and either not set a purpose for the certificate verification or, in the case of TLS client or server applications, override the default purpose. OpenSSL versions 1.1.1h and newer are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1h-1.1.1j). | |||||
CVE-2020-11023 | 7 Debian, Drupal, Fedoraproject and 4 more | 55 Debian Linux, Drupal, Fedora and 52 more | 2023-02-02 | 4.3 MEDIUM | 6.1 MEDIUM |
In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | |||||
CVE-2020-28052 | 3 Apache, Bouncycastle, Oracle | 20 Karaf, Legion-of-the-bouncy-castle-java-crytography-api, Banking Corporate Lending Process Management and 17 more | 2023-02-02 | 6.8 MEDIUM | 8.1 HIGH |
An issue was discovered in Legion of the Bouncy Castle BC Java 1.65 and 1.66. The OpenBSDBCrypt.checkPassword utility method compared incorrect data when checking the password, allowing incorrect passwords to indicate they were matching with previously hashed ones that were different. | |||||
CVE-2020-25649 | 6 Apache, Fasterxml, Fedoraproject and 3 more | 39 Iotdb, Jackson-databind, Fedora and 36 more | 2023-02-02 | 5.0 MEDIUM | 7.5 HIGH |
A flaw was found in FasterXML Jackson Databind, where it did not have entity expansion secured properly. This flaw allows vulnerability to XML external entity (XXE) attacks. The highest threat from this vulnerability is data integrity. | |||||
CVE-2021-3712 | 7 Debian, Mcafee, Netapp and 4 more | 32 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 29 more | 2022-12-06 | 5.8 MEDIUM | 7.4 HIGH |
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y). | |||||
CVE-2021-3711 | 5 Debian, Netapp, Openssl and 2 more | 31 Debian Linux, Active Iq Unified Manager, Clustered Data Ontap and 28 more | 2022-12-06 | 7.5 HIGH | 9.8 CRITICAL |
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). | |||||
CVE-2019-17566 | 2 Apache, Oracle | 18 Batik, Api Gateway, Business Intelligence and 15 more | 2022-12-06 | 5.0 MEDIUM | 7.5 HIGH |
Apache Batik is vulnerable to server-side request forgery, caused by improper input validation by the "xlink:href" attributes. By using a specially-crafted argument, an attacker could exploit this vulnerability to cause the underlying server to make arbitrary GET requests. | |||||
CVE-2019-14379 | 7 Apple, Debian, Fasterxml and 4 more | 25 Xcode, Debian Linux, Jackson-databind and 22 more | 2022-12-02 | 7.5 HIGH | 9.8 CRITICAL |
SubTypeValidator.java in FasterXML jackson-databind before 2.9.9.2 mishandles default typing when ehcache is used (because of net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup), leading to remote code execution. | |||||
CVE-2021-20227 | 2 Oracle, Sqlite | 7 Communications Network Charging And Control, Enterprise Manager For Oracle Database, Jd Edwards Enterpriseone Tools and 4 more | 2022-11-16 | 2.1 LOW | 5.5 MEDIUM |
A flaw was found in SQLite's SELECT query functionality (src/select.c). This flaw allows an attacker who is capable of running SQL queries locally on the SQLite database to cause a denial of service or possible code execution by triggering a use-after-free. The highest threat from this vulnerability is to system availability. | |||||
CVE-2021-4160 | 4 Debian, Openssl, Oracle and 1 more | 8 Debian Linux, Openssl, Enterprise Manager Ops Center and 5 more | 2022-11-09 | 4.3 MEDIUM | 5.9 MEDIUM |
There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For the 1.0.2 release it is addressed in git commit 6fc1aaaf3 that is available to premium support customers only. It will be made available in 1.0.2zc when it is released. The issue only affects OpenSSL on MIPS platforms. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). Fixed in OpenSSL 1.1.1m (Affected 1.1.1-1.1.1l). Fixed in OpenSSL 1.0.2zc-dev (Affected 1.0.2-1.0.2zb). | |||||
CVE-2021-22939 | 5 Debian, Netapp, Nodejs and 2 more | 8 Debian Linux, Nextgen Api, Node.js and 5 more | 2022-11-07 | 5.0 MEDIUM | 5.3 MEDIUM |
If the Node.js https API was used incorrectly and "undefined" was in passed for the "rejectUnauthorized" parameter, no error was returned and connections to servers with an expired certificate would have been accepted. | |||||
CVE-2021-41182 | 7 Debian, Drupal, Fedoraproject and 4 more | 37 Debian Linux, Drupal, Fedora and 34 more | 2022-11-07 | 4.3 MEDIUM | 6.1 MEDIUM |
jQuery-UI is the official jQuery user interface library. Prior to version 1.13.0, accepting the value of the `altField` option of the Datepicker widget from untrusted sources may execute untrusted code. The issue is fixed in jQuery UI 1.13.0. Any string value passed to the `altField` option is now treated as a CSS selector. A workaround is to not accept the value of the `altField` option from untrusted sources. | |||||
CVE-2021-41184 | 6 Drupal, Fedoraproject, Jquery and 3 more | 35 Drupal, Fedora, Jquery Ui and 32 more | 2022-11-07 | 4.3 MEDIUM | 6.1 MEDIUM |
jQuery-UI is the official jQuery user interface library. Prior to version 1.13.0, accepting the value of the `of` option of the `.position()` util from untrusted sources may execute untrusted code. The issue is fixed in jQuery UI 1.13.0. Any string value passed to the `of` option is now treated as a CSS selector. A workaround is to not accept the value of the `of` option from untrusted sources. | |||||
CVE-2021-41183 | 7 Debian, Drupal, Fedoraproject and 4 more | 36 Debian Linux, Drupal, Fedora and 33 more | 2022-11-07 | 4.3 MEDIUM | 6.1 MEDIUM |
jQuery-UI is the official jQuery user interface library. Prior to version 1.13.0, accepting the value of various `*Text` options of the Datepicker widget from untrusted sources may execute untrusted code. The issue is fixed in jQuery UI 1.13.0. The values passed to various `*Text` options are now always treated as pure text, not HTML. A workaround is to not accept the value of the `*Text` options from untrusted sources. | |||||
CVE-2021-22940 | 5 Debian, Netapp, Nodejs and 2 more | 7 Debian Linux, Nextgen Api, Node.js and 4 more | 2022-11-03 | 5.0 MEDIUM | 7.5 HIGH |
Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior. | |||||
CVE-2017-15095 | 5 Debian, Fasterxml, Netapp and 2 more | 25 Debian Linux, Jackson-databind, Oncommand Balance and 22 more | 2022-10-25 | 7.5 HIGH | 9.8 CRITICAL |
A deserialization flaw was discovered in the jackson-databind in versions before 2.8.10 and 2.9.1, which could allow an unauthenticated user to perform code execution by sending the maliciously crafted input to the readValue method of the ObjectMapper. This issue extends the previous flaw CVE-2017-7525 by blacklisting more classes that could be used maliciously. | |||||
CVE-2021-22883 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 9 Fedora, E-series Performance Analyzer, Node.js and 6 more | 2022-10-24 | 7.8 HIGH | 7.5 HIGH |
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory. | |||||
CVE-2022-21631 | 1 Oracle | 1 Jd Edwards Enterpriseone Tools | 2022-10-19 | N/A | 6.1 MEDIUM |
Vulnerability in the JD Edwards EnterpriseOne Tools product of Oracle JD Edwards (component: Design Tools SEC). Supported versions that are affected are 9.2.6.4 and prior. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise JD Edwards EnterpriseOne Tools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in JD Edwards EnterpriseOne Tools, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of JD Edwards EnterpriseOne Tools accessible data as well as unauthorized read access to a subset of JD Edwards EnterpriseOne Tools accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N). | |||||
CVE-2022-21630 | 1 Oracle | 1 Jd Edwards Enterpriseone Tools | 2022-10-19 | N/A | 6.1 MEDIUM |
Vulnerability in the JD Edwards EnterpriseOne Tools product of Oracle JD Edwards (component: Web Runtime SEC). Supported versions that are affected are 9.2.6.4 and prior. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise JD Edwards EnterpriseOne Tools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in JD Edwards EnterpriseOne Tools, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of JD Edwards EnterpriseOne Tools accessible data as well as unauthorized read access to a subset of JD Edwards EnterpriseOne Tools accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N). |