Total
7 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2020-24588 | 8 Arista, Cisco, Debian and 5 more | 350 C-100, C-100 Firmware, C-110 and 347 more | 2023-03-03 | 2.9 LOW | 3.5 LOW |
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that the A-MSDU flag in the plaintext QoS header field is authenticated. Against devices that support receiving non-SSP A-MSDU frames (which is mandatory as part of 802.11n), an adversary can abuse this to inject arbitrary network packets. | |||||
CVE-2020-26139 | 5 Arista, Cisco, Debian and 2 more | 330 C-100, C-100 Firmware, C-110 and 327 more | 2022-09-29 | 2.9 LOW | 5.3 MEDIUM |
An issue was discovered in the kernel in NetBSD 7.1. An Access Point (AP) forwards EAPOL frames to other clients even though the sender has not yet successfully authenticated to the AP. This might be abused in projected Wi-Fi networks to launch denial-of-service attacks against connected clients and makes it easier to exploit other vulnerabilities in connected clients. | |||||
CVE-2020-26140 | 5 Alfa, Arista, Cisco and 2 more | 388 Awus036h, Awus036h Firmware, C-100 and 385 more | 2022-09-02 | 3.3 LOW | 6.5 MEDIUM |
An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration. | |||||
CVE-2020-24587 | 6 Arista, Cisco, Debian and 3 more | 332 C-100, C-100 Firmware, C-110 and 329 more | 2022-07-12 | 1.8 LOW | 2.6 LOW |
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that all fragments of a frame are encrypted under the same key. An adversary can abuse this to decrypt selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP encryption key is periodically renewed. | |||||
CVE-2019-15260 | 1 Cisco | 12 Aironet 1540, Aironet 1540 Firmware, Aironet 1560 and 9 more | 2021-11-02 | 10.0 HIGH | 9.8 CRITICAL |
A vulnerability in Cisco Aironet Access Points (APs) Software could allow an unauthenticated, remote attacker to gain unauthorized access to a targeted device with elevated privileges. The vulnerability is due to insufficient access control for certain URLs on an affected device. An attacker could exploit this vulnerability by requesting specific URLs from an affected AP. An exploit could allow the attacker to gain access to the device with elevated privileges. While the attacker would not be granted access to all possible configuration options, it could allow the attacker to view sensitive information and replace some options with values of their choosing, including wireless network configuration. It would also allow the attacker to disable the AP, creating a denial of service (DoS) condition for clients associated with the AP. | |||||
CVE-2019-15265 | 1 Cisco | 10 Aironet 1540, Aironet 1540 Firmware, Aironet 1560 and 7 more | 2019-10-22 | 2.1 LOW | 6.5 MEDIUM |
A vulnerability in the bridge protocol data unit (BPDU) forwarding functionality of Cisco Aironet Access Points (APs) could allow an unauthenticated, adjacent attacker to cause an AP port to go into an error disabled state. The vulnerability occurs because BPDUs received from specific wireless clients are forwarded incorrectly. An attacker could exploit this vulnerability on the wireless network by sending a steady stream of crafted BPDU frames. A successful exploit could allow the attacker to cause a limited denial of service (DoS) attack because an AP port could go offline. | |||||
CVE-2017-12281 | 1 Cisco | 12 Aironet 1800 Firmware, Aironet 1830e, Aironet 1830i and 9 more | 2019-10-09 | 5.4 MEDIUM | 7.5 HIGH |
A vulnerability in the implementation of Protected Extensible Authentication Protocol (PEAP) functionality for standalone configurations of Cisco Aironet 1800, 2800, and 3800 Series Access Points could allow an unauthenticated, adjacent attacker to bypass authentication and connect to an affected device. The vulnerability exists because the affected device uses an incorrect default configuration setting of fail open when running in standalone mode. An attacker could exploit this vulnerability by attempting to connect to an affected device. A successful exploit could allow the attacker to bypass authentication and connect to the affected device. This vulnerability affects Cisco Aironet 1800, 2800, and 3800 Series Access Points that are running a vulnerable software release and use WLAN configuration settings that include FlexConnect local switching and central authentication with MAC filtering. Cisco Bug IDs: CSCvd46314. |