Filtered by vendor Openssl
Subscribe
Total
242 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2015-0291 | 1 Openssl | 1 Openssl | 2022-12-13 | 5.0 MEDIUM | N/A |
The sigalgs implementation in t1_lib.c in OpenSSL 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) by using an invalid signature_algorithms extension in the ClientHello message during a renegotiation. | |||||
CVE-2015-0290 | 1 Openssl | 1 Openssl | 2022-12-13 | 5.0 MEDIUM | N/A |
The multi-block feature in the ssl3_write_bytes function in s3_pkt.c in OpenSSL 1.0.2 before 1.0.2a on 64-bit x86 platforms with AES NI support does not properly handle certain non-blocking I/O cases, which allows remote attackers to cause a denial of service (pointer corruption and application crash) via unspecified vectors. | |||||
CVE-2016-0704 | 1 Openssl | 1 Openssl | 2022-12-13 | 4.3 MEDIUM | 5.9 MEDIUM |
An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | |||||
CVE-2016-6308 | 1 Openssl | 1 Openssl | 2022-12-13 | 7.1 HIGH | 5.9 MEDIUM |
statem/statem_dtls.c in the DTLS implementation in OpenSSL 1.1.0 before 1.1.0a allocates memory before checking for an excessive length, which might allow remote attackers to cause a denial of service (memory consumption) via crafted DTLS messages. | |||||
CVE-2016-2181 | 2 Openssl, Oracle | 2 Openssl, Linux | 2022-12-13 | 5.0 MEDIUM | 7.5 HIGH |
The Anti-Replay feature in the DTLS implementation in OpenSSL before 1.1.0 mishandles early use of a new epoch number in conjunction with a large sequence number, which allows remote attackers to cause a denial of service (false-positive packet drops) via spoofed DTLS records, related to rec_layer_d1.c and ssl3_record.c. | |||||
CVE-2016-2179 | 2 Openssl, Oracle | 2 Openssl, Linux | 2022-12-13 | 5.0 MEDIUM | 7.5 HIGH |
The DTLS implementation in OpenSSL before 1.1.0 does not properly restrict the lifetime of queue entries associated with unused out-of-order messages, which allows remote attackers to cause a denial of service (memory consumption) by maintaining many crafted DTLS sessions simultaneously, related to d1_lib.c, statem_dtls.c, statem_lib.c, and statem_srvr.c. | |||||
CVE-2015-1787 | 1 Openssl | 1 Openssl | 2022-12-13 | 2.6 LOW | N/A |
The ssl3_get_client_key_exchange function in s3_srvr.c in OpenSSL 1.0.2 before 1.0.2a, when client authentication and an ephemeral Diffie-Hellman ciphersuite are enabled, allows remote attackers to cause a denial of service (daemon crash) via a ClientKeyExchange message with a length of zero. | |||||
CVE-2015-1788 | 1 Openssl | 1 Openssl | 2022-12-13 | 4.3 MEDIUM | N/A |
The BN_GF2m_mod_inv function in crypto/bn/bn_gf2m.c in OpenSSL before 0.9.8s, 1.0.0 before 1.0.0e, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b does not properly handle ECParameters structures in which the curve is over a malformed binary polynomial field, which allows remote attackers to cause a denial of service (infinite loop) via a session that uses an Elliptic Curve algorithm, as demonstrated by an attack against a server that supports client authentication. | |||||
CVE-2016-0702 | 4 Canonical, Debian, Nodejs and 1 more | 4 Ubuntu Linux, Debian Linux, Node.js and 1 more | 2022-12-13 | 1.9 LOW | 5.1 MEDIUM |
The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack. | |||||
CVE-2016-6302 | 2 Openssl, Oracle | 3 Openssl, Linux, Solaris | 2022-12-13 | 5.0 MEDIUM | 7.5 HIGH |
The tls_decrypt_ticket function in ssl/t1_lib.c in OpenSSL before 1.1.0 does not consider the HMAC size during validation of the ticket length, which allows remote attackers to cause a denial of service via a ticket that is too short. | |||||
CVE-2015-0286 | 1 Openssl | 1 Openssl | 2022-12-13 | 5.0 MEDIUM | N/A |
The ASN1_TYPE_cmp function in crypto/asn1/a_type.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly perform boolean-type comparisons, which allows remote attackers to cause a denial of service (invalid read operation and application crash) via a crafted X.509 certificate to an endpoint that uses the certificate-verification feature. | |||||
CVE-2016-2107 | 8 Canonical, Debian, Google and 5 more | 15 Ubuntu Linux, Debian Linux, Android and 12 more | 2022-12-13 | 2.6 LOW | 5.9 MEDIUM |
The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169. | |||||
CVE-2016-6304 | 3 Nodejs, Novell, Openssl | 3 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl | 2022-12-13 | 7.8 HIGH | 7.5 HIGH |
Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions. | |||||
CVE-2015-1790 | 1 Openssl | 1 Openssl | 2022-12-13 | 5.0 MEDIUM | N/A |
The PKCS7_dataDecodefunction in crypto/pkcs7/pk7_doit.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a PKCS#7 blob that uses ASN.1 encoding and lacks inner EncryptedContent data. | |||||
CVE-2015-0209 | 1 Openssl | 1 Openssl | 2022-12-13 | 6.8 MEDIUM | N/A |
Use-after-free vulnerability in the d2i_ECPrivateKey function in crypto/ec/ec_asn1.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via a malformed Elliptic Curve (EC) private-key file that is improperly handled during import. | |||||
CVE-2021-3712 | 7 Debian, Mcafee, Netapp and 4 more | 32 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 29 more | 2022-12-06 | 5.8 MEDIUM | 7.4 HIGH |
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y). | |||||
CVE-2021-3711 | 5 Debian, Netapp, Openssl and 2 more | 31 Debian Linux, Active Iq Unified Manager, Clustered Data Ontap and 28 more | 2022-12-06 | 7.5 HIGH | 9.8 CRITICAL |
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). | |||||
CVE-2020-1968 | 5 Canonical, Debian, Fujitsu and 2 more | 25 Ubuntu Linux, Debian Linux, M10-1 and 22 more | 2022-11-21 | 4.3 MEDIUM | 3.7 LOW |
The Raccoon attack exploits a flaw in the TLS specification which can lead to an attacker being able to compute the pre-master secret in connections which have used a Diffie-Hellman (DH) based ciphersuite. In such a case this would result in the attacker being able to eavesdrop on all encrypted communications sent over that TLS connection. The attack can only be exploited if an implementation re-uses a DH secret across multiple TLS connections. Note that this issue only impacts DH ciphersuites and not ECDH ciphersuites. This issue affects OpenSSL 1.0.2 which is out of support and no longer receiving public updates. OpenSSL 1.1.1 is not vulnerable to this issue. Fixed in OpenSSL 1.0.2w (Affected 1.0.2-1.0.2v). | |||||
CVE-2021-4160 | 4 Debian, Openssl, Oracle and 1 more | 8 Debian Linux, Openssl, Enterprise Manager Ops Center and 5 more | 2022-11-09 | 4.3 MEDIUM | 5.9 MEDIUM |
There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For the 1.0.2 release it is addressed in git commit 6fc1aaaf3 that is available to premium support customers only. It will be made available in 1.0.2zc when it is released. The issue only affects OpenSSL on MIPS platforms. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). Fixed in OpenSSL 1.1.1m (Affected 1.1.1-1.1.1l). Fixed in OpenSSL 1.0.2zc-dev (Affected 1.0.2-1.0.2zb). | |||||
CVE-2022-0778 | 7 Debian, Fedoraproject, Mariadb and 4 more | 15 Debian Linux, Fedora, Mariadb and 12 more | 2022-11-09 | 5.0 MEDIUM | 7.5 HIGH |
The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc). |