Filtered by vendor Isc
Subscribe
Total
215 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2020-8619 | 6 Canonical, Debian, Fedoraproject and 3 more | 6 Ubuntu Linux, Debian Linux, Fedora and 3 more | 2022-10-07 | 4.0 MEDIUM | 4.9 MEDIUM |
In ISC BIND9 versions BIND 9.11.14 -> 9.11.19, BIND 9.14.9 -> 9.14.12, BIND 9.16.0 -> 9.16.3, BIND Supported Preview Edition 9.11.14-S1 -> 9.11.19-S1: Unless a nameserver is providing authoritative service for one or more zones and at least one zone contains an empty non-terminal entry containing an asterisk ("*") character, this defect cannot be encountered. A would-be attacker who is allowed to change zone content could theoretically introduce such a record in order to exploit this condition to cause denial of service, though we consider the use of this vector unlikely because any such attack would require a significant privilege level and be easily traceable. | |||||
CVE-2022-1183 | 2 Isc, Netapp | 11 Bind, H300s, H300s Firmware and 8 more | 2022-10-07 | 4.3 MEDIUM | 7.5 HIGH |
On vulnerable configurations, the named daemon may, in some circumstances, terminate with an assertion failure. Vulnerable configurations are those that include a reference to http within the listen-on statements in their named.conf. TLS is used by both DNS over TLS (DoT) and DNS over HTTPS (DoH), but configurations using DoT alone are unaffected. Affects BIND 9.18.0 -> 9.18.2 and version 9.19.0 of the BIND 9.19 development branch. | |||||
CVE-2020-8618 | 4 Canonical, Isc, Netapp and 1 more | 4 Ubuntu Linux, Bind, Steelstore Cloud Integrated Storage and 1 more | 2022-10-07 | 4.0 MEDIUM | 4.9 MEDIUM |
An attacker who is permitted to send zone data to a server via zone transfer can exploit this to intentionally trigger the assertion failure with a specially constructed zone, denying service to clients. | |||||
CVE-2021-25217 | 5 Debian, Fedoraproject, Isc and 2 more | 25 Debian Linux, Fedora, Dhcp and 22 more | 2022-09-13 | 3.3 LOW | 7.4 HIGH |
In ISC DHCP 4.1-ESV-R1 -> 4.1-ESV-R16, ISC DHCP 4.4.0 -> 4.4.2 (Other branches of ISC DHCP (i.e., releases in the 4.0.x series or lower and releases in the 4.3.x series) are beyond their End-of-Life (EOL) and no longer supported by ISC. From inspection it is clear that the defect is also present in releases from those series, but they have not been officially tested for the vulnerability), The outcome of encountering the defect while reading a lease that will trigger it varies, according to: the component being affected (i.e., dhclient or dhcpd) whether the package was built as a 32-bit or 64-bit binary whether the compiler flag -fstack-protection-strong was used when compiling In dhclient, ISC has not successfully reproduced the error on a 64-bit system. However, on a 32-bit system it is possible to cause dhclient to crash when reading an improper lease, which could cause network connectivity problems for an affected system due to the absence of a running DHCP client process. In dhcpd, when run in DHCPv4 or DHCPv6 mode: if the dhcpd server binary was built for a 32-bit architecture AND the -fstack-protection-strong flag was specified to the compiler, dhcpd may exit while parsing a lease file containing an objectionable lease, resulting in lack of service to clients. Additionally, the offending lease and the lease immediately following it in the lease database may be improperly deleted. if the dhcpd server binary was built for a 64-bit architecture OR if the -fstack-protection-strong compiler flag was NOT specified, the crash will not occur, but it is possible for the offending lease and the lease which immediately followed it to be improperly deleted. | |||||
CVE-2020-8617 | 5 Canonical, Debian, Fedoraproject and 2 more | 5 Ubuntu Linux, Debian Linux, Fedora and 2 more | 2022-09-09 | 4.3 MEDIUM | 5.9 MEDIUM |
Using a specially-crafted message, an attacker may potentially cause a BIND server to reach an inconsistent state if the attacker knows (or successfully guesses) the name of a TSIG key used by the server. Since BIND, by default, configures a local session key even on servers whose configuration does not otherwise make use of it, almost all current BIND servers are vulnerable. In releases of BIND dating from March 2018 and after, an assertion check in tsig.c detects this inconsistent state and deliberately exits. Prior to the introduction of the check the server would continue operating in an inconsistent state, with potentially harmful results. | |||||
CVE-1999-0043 | 6 Bsdi, Caldera, Isc and 3 more | 7 Bsd Os, Openlinux, Inn and 4 more | 2022-08-17 | 10.0 HIGH | N/A |
Command execution via shell metachars in INN daemon (innd) 1.5 using "newgroup" and "rmgroup" control messages, and others. | |||||
CVE-1999-0184 | 1 Isc | 1 Bind | 2022-08-17 | 6.4 MEDIUM | N/A |
When compiled with the -DALLOW_UPDATES option, bind allows dynamic updates to the DNS server, allowing for malicious modification of DNS records. | |||||
CVE-1999-0024 | 6 Bsdi, Ibm, Isc and 3 more | 12 Bsd Os, Aix, Bind and 9 more | 2022-08-17 | 5.0 MEDIUM | N/A |
DNS cache poisoning via BIND, by predictable query IDs. | |||||
CVE-1999-0100 | 1 Isc | 1 Inn | 2022-08-17 | 10.0 HIGH | N/A |
Remote access in AIX innd 1.5.1, using control messages. | |||||
CVE-1999-0868 | 5 Isc, Nec, Netscape and 2 more | 6 Inn, Goah Intrasv, Goah Networksv and 3 more | 2022-08-16 | 7.2 HIGH | N/A |
ucbmail allows remote attackers to execute commands via shell metacharacters that are passed to it from INN. | |||||
CVE-2020-8620 | 4 Canonical, Isc, Netapp and 1 more | 4 Ubuntu Linux, Bind, Steelstore Cloud Integrated Storage and 1 more | 2022-06-02 | 5.0 MEDIUM | 7.5 HIGH |
In BIND 9.15.6 -> 9.16.5, 9.17.0 -> 9.17.3, An attacker who can establish a TCP connection with the server and send data on that connection can exploit this to trigger the assertion failure, causing the server to exit. | |||||
CVE-2022-0667 | 2 Isc, Netapp | 17 Bind, Baseboard Management Controller H300e, Baseboard Management Controller H300e Firmware and 14 more | 2022-06-01 | 5.0 MEDIUM | 7.5 HIGH |
When the vulnerability is triggered the BIND process will exit. BIND 9.18.0 | |||||
CVE-2022-0635 | 2 Isc, Netapp | 17 Bind, Baseboard Management Controller H300e, Baseboard Management Controller H300e Firmware and 14 more | 2022-06-01 | 5.0 MEDIUM | 7.5 HIGH |
Versions affected: BIND 9.18.0 When a vulnerable version of named receives a series of specific queries, the named process will eventually terminate due to a failed assertion check. | |||||
CVE-2021-25216 | 4 Debian, Isc, Netapp and 1 more | 23 Debian Linux, Bind, Active Iq Unified Manager and 20 more | 2022-05-03 | 6.8 MEDIUM | 9.8 CRITICAL |
In BIND 9.5.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.11.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.1 of the BIND 9.17 development branch, BIND servers are vulnerable if they are running an affected version and are configured to use GSS-TSIG features. In a configuration which uses BIND's default settings the vulnerable code path is not exposed, but a server can be rendered vulnerable by explicitly setting values for the tkey-gssapi-keytab or tkey-gssapi-credential configuration options. Although the default configuration is not vulnerable, GSS-TSIG is frequently used in networks where BIND is integrated with Samba, as well as in mixed-server environments that combine BIND servers with Active Directory domain controllers. For servers that meet these conditions, the ISC SPNEGO implementation is vulnerable to various attacks, depending on the CPU architecture for which BIND was built: For named binaries compiled for 64-bit platforms, this flaw can be used to trigger a buffer over-read, leading to a server crash. For named binaries compiled for 32-bit platforms, this flaw can be used to trigger a server crash due to a buffer overflow and possibly also to achieve remote code execution. We have determined that standard SPNEGO implementations are available in the MIT and Heimdal Kerberos libraries, which support a broad range of operating systems, rendering the ISC implementation unnecessary and obsolete. Therefore, to reduce the attack surface for BIND users, we will be removing the ISC SPNEGO implementation in the April releases of BIND 9.11 and 9.16 (it had already been dropped from BIND 9.17). We would not normally remove something from a stable ESV (Extended Support Version) of BIND, but since system libraries can replace the ISC SPNEGO implementation, we have made an exception in this case for reasons of stability and security. | |||||
CVE-2020-8621 | 5 Canonical, Isc, Netapp and 2 more | 5 Ubuntu Linux, Bind, Steelstore Cloud Integrated Storage and 2 more | 2022-04-28 | 4.3 MEDIUM | 7.5 HIGH |
In BIND 9.14.0 -> 9.16.5, 9.17.0 -> 9.17.3, If a server is configured with both QNAME minimization and 'forward first' then an attacker who can send queries to it may be able to trigger the condition that will cause the server to crash. Servers that 'forward only' are not affected. | |||||
CVE-2020-8623 | 7 Canonical, Debian, Fedoraproject and 4 more | 7 Ubuntu Linux, Debian Linux, Fedora and 4 more | 2022-04-28 | 4.3 MEDIUM | 7.5 HIGH |
In BIND 9.10.0 -> 9.11.21, 9.12.0 -> 9.16.5, 9.17.0 -> 9.17.3, also affects 9.10.5-S1 -> 9.11.21-S1 of the BIND 9 Supported Preview Edition, An attacker that can reach a vulnerable system with a specially crafted query packet can trigger a crash. To be vulnerable, the system must: * be running BIND that was built with "--enable-native-pkcs11" * be signing one or more zones with an RSA key * be able to receive queries from a possible attacker | |||||
CVE-2021-25214 | 5 Debian, Fedoraproject, Isc and 2 more | 24 Debian Linux, Fedora, Bind and 21 more | 2022-04-25 | 4.0 MEDIUM | 6.5 MEDIUM |
In BIND 9.8.5 -> 9.8.8, 9.9.3 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND 9 Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a malformed IXFR triggering the flaw described above, the named process will terminate due to a failed assertion the next time the transferred secondary zone is refreshed. | |||||
CVE-2021-25215 | 6 Debian, Fedoraproject, Isc and 3 more | 25 Debian Linux, Fedora, Bind and 22 more | 2022-04-25 | 5.0 MEDIUM | 7.5 HIGH |
In BIND 9.0.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a query for a record triggering the flaw described above, the named process will terminate due to a failed assertion check. The vulnerability affects all currently maintained BIND 9 branches (9.11, 9.11-S, 9.16, 9.16-S, 9.17) as well as all other versions of BIND 9. | |||||
CVE-2020-8625 | 5 Debian, Fedoraproject, Isc and 2 more | 9 Debian Linux, Fedora, Bind and 6 more | 2022-04-18 | 6.8 MEDIUM | 8.1 HIGH |
BIND servers are vulnerable if they are running an affected version and are configured to use GSS-TSIG features. In a configuration which uses BIND's default settings the vulnerable code path is not exposed, but a server can be rendered vulnerable by explicitly setting valid values for the tkey-gssapi-keytab or tkey-gssapi-credentialconfiguration options. Although the default configuration is not vulnerable, GSS-TSIG is frequently used in networks where BIND is integrated with Samba, as well as in mixed-server environments that combine BIND servers with Active Directory domain controllers. The most likely outcome of a successful exploitation of the vulnerability is a crash of the named process. However, remote code execution, while unproven, is theoretically possible. Affects: BIND 9.5.0 -> 9.11.27, 9.12.0 -> 9.16.11, and versions BIND 9.11.3-S1 -> 9.11.27-S1 and 9.16.8-S1 -> 9.16.11-S1 of BIND Supported Preview Edition. Also release versions 9.17.0 -> 9.17.1 of the BIND 9.17 development branch | |||||
CVE-2018-5740 | 7 Canonical, Debian, Hp and 4 more | 11 Ubuntu Linux, Debian Linux, Hp-ux and 8 more | 2022-04-12 | 5.0 MEDIUM | 7.5 HIGH |
"deny-answer-aliases" is a little-used feature intended to help recursive server operators protect end users against DNS rebinding attacks, a potential method of circumventing the security model used by client browsers. However, a defect in this feature makes it easy, when the feature is in use, to experience an assertion failure in name.c. Affects BIND 9.7.0->9.8.8, 9.9.0->9.9.13, 9.10.0->9.10.8, 9.11.0->9.11.4, 9.12.0->9.12.2, 9.13.0->9.13.2. |