Vulnerabilities (CVE)

Join the Common Vulnerabilities and Exposures (CVE) community and start to get notified about new vulnerabilities.

Filtered by vendor Google Subscribe
Filtered by product Tensorflow
Total 407 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2021-37643 1 Google 1 Tensorflow 2021-08-18 3.6 LOW 7.1 HIGH
TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37646 1 Google 1 Tensorflow 2021-08-18 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37645 1 Google 1 Tensorflow 2021-08-18 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range.
CVE-2021-37644 1 Google 1 Tensorflow 2021-08-18 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37650 1 Google 1 Tensorflow 2021-08-18 4.6 MEDIUM 7.8 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.ExperimentalDatasetToTFRecord` and `tf.raw_ops.DatasetToTFRecord` can trigger heap buffer overflow and segmentation fault. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) assumes that all records in the dataset are of string type. However, there is no check for that, and the example given above uses numeric types. We have patched the issue in GitHub commit e0b6e58c328059829c3eb968136f17aa72b6c876. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37651 1 Google 1 Tensorflow 2021-08-18 4.6 MEDIUM 7.8 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37654 1 Google 1 Tensorflow 2021-08-18 3.6 LOW 7.1 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37655 1 Google 1 Tensorflow 2021-08-18 4.6 MEDIUM 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37659 1 Google 1 Tensorflow 2021-08-18 4.6 MEDIUM 7.8 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37656 1 Google 1 Tensorflow 2021-08-18 4.6 MEDIUM 7.8 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37657 1 Google 1 Tensorflow 2021-08-18 4.6 MEDIUM 7.8 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2020-26267 1 Google 1 Tensorflow 2021-08-17 4.3 MEDIUM 7.8 HIGH
In affected versions of TensorFlow the tf.raw_ops.DataFormatVecPermute API does not validate the src_format and dst_format attributes. The code assumes that these two arguments define a permutation of NHWC. This can result in uninitialized memory accesses, read outside of bounds and even crashes. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
CVE-2020-15197 1 Google 1 Tensorflow 2021-08-17 3.5 LOW 6.3 MEDIUM
In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15214 1 Google 1 Tensorflow 2021-08-17 6.8 MEDIUM 8.1 HIGH
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
CVE-2020-15194 2 Google, Opensuse 2 Tensorflow, Leap 2021-08-17 5.0 MEDIUM 5.3 MEDIUM
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
CVE-2020-15265 1 Google 1 Tensorflow 2021-08-17 5.0 MEDIUM 7.5 HIGH
In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
CVE-2020-26269 1 Google 1 Tensorflow 2021-08-17 5.0 MEDIUM 7.5 HIGH
In TensorFlow release candidate versions 2.4.0rc*, the general implementation for matching filesystem paths to globbing pattern is vulnerable to an access out of bounds of the array holding the directories. There are multiple invariants and preconditions that are assumed by the parallel implementation of GetMatchingPaths but are not verified by the PRs introducing it (#40861 and #44310). Thus, we are completely rewriting the implementation to fully specify and validate these. This is patched in version 2.4.0. This issue only impacts master branch and the release candidates for TF version 2.4. The final release of the 2.4 release will be patched.
CVE-2020-15212 1 Google 1 Tensorflow 2021-08-17 7.5 HIGH 8.6 HIGH
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
CVE-2021-29533 1 Google 1 Tensorflow 2021-07-27 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CVE-2021-29534 1 Google 1 Tensorflow 2021-07-27 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.