Vulnerabilities (CVE)

Join the Common Vulnerabilities and Exposures (CVE) community and start to get notified about new vulnerabilities.

Filtered by CWE-362
Total 1264 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2022-23038 2 Debian, Xen 2 Debian Linux, Xen 2022-11-28 4.4 MEDIUM 7.0 HIGH
Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042
CVE-2022-23037 2 Debian, Xen 2 Debian Linux, Xen 2022-11-28 4.4 MEDIUM 7.0 HIGH
Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042
CVE-2022-23042 2 Debian, Xen 2 Debian Linux, Xen 2022-11-28 4.4 MEDIUM 7.0 HIGH
Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042
CVE-2022-23036 2 Debian, Xen 2 Debian Linux, Xen 2022-11-28 4.4 MEDIUM 7.0 HIGH
Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042
CVE-2022-23041 2 Debian, Xen 2 Debian Linux, Xen 2022-11-28 4.4 MEDIUM 7.0 HIGH
Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042
CVE-2022-28768 1 Zoom 1 Meetings 2022-11-22 N/A 7.8 HIGH
The Zoom Client for Meetings Installer for macOS (Standard and for IT Admin) before version 5.12.6 contains a local privilege escalation vulnerability. A local low-privileged user could exploit this vulnerability during the install process to escalate their privileges to root.
CVE-2022-39188 2 Debian, Linux 2 Debian Linux, Linux Kernel 2022-11-21 N/A 4.7 MEDIUM
An issue was discovered in include/asm-generic/tlb.h in the Linux kernel before 5.19. Because of a race condition (unmap_mapping_range versus munmap), a device driver can free a page while it still has stale TLB entries. This only occurs in situations with VM_PFNMAP VMAs.
CVE-2022-40130 1 Wp-polls Project 1 Wp-polls 2022-11-20 N/A 3.1 LOW
Auth. (subscriber+) Race Condition vulnerability in WP-Polls plugin <= 2.76.0 on WordPress.
CVE-2013-0900 5 Apple, Debian, Google and 2 more 5 Mac Os X, Debian Linux, Chrome and 2 more 2022-11-18 6.8 MEDIUM N/A
Race condition in the International Components for Unicode (ICU) functionality in Google Chrome before 25.0.1364.97 on Windows and Linux, and before 25.0.1364.99 on Mac OS X, allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors.
CVE-2013-0893 5 Apple, Google, Linux and 2 more 5 Mac Os X, Chrome, Linux Kernel and 2 more 2022-11-18 6.8 MEDIUM N/A
Race condition in Google Chrome before 25.0.1364.97 on Windows and Linux, and before 25.0.1364.99 on Mac OS X, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to media.
CVE-2021-32686 2 Debian, Teluu 2 Debian Linux, Pjsip 2022-11-16 4.3 MEDIUM 5.9 MEDIUM
PJSIP is a free and open source multimedia communication library written in C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In PJSIP before version 2.11.1, there are a couple of issues found in the SSL socket. First, a race condition between callback and destroy, due to the accepted socket having no group lock. Second, the SSL socket parent/listener may get destroyed during handshake. Both issues were reported to happen intermittently in heavy load TLS connections. They cause a crash, resulting in a denial of service. These are fixed in version 2.11.1.
CVE-2020-15309 1 Wolfssl 1 Wolfssl 2022-11-16 6.9 MEDIUM 7.0 HIGH
An issue was discovered in wolfSSL before 4.5.0, when single precision is not employed. Local attackers can conduct a cache-timing attack against public key operations. These attackers may already have obtained sensitive information if the affected system has been used for private key operations (e.g., signing with a private key).
CVE-2022-41035 1 Microsoft 1 Edge Chromium 2022-11-14 N/A 5.3 MEDIUM
Microsoft Edge (Chromium-based) Spoofing Vulnerability.
CVE-2021-3597 2 Netapp, Redhat 9 Active Iq Unified Manager, Oncommand Insight, Oncommand Workflow Automation and 6 more 2022-11-10 2.6 LOW 5.9 MEDIUM
A flaw was found in undertow. The HTTP2SourceChannel fails to write the final frame under some circumstances, resulting in a denial of service. The highest threat from this vulnerability is availability. This flaw affects Undertow versions prior to 2.0.35.SP1, prior to 2.2.6.SP1, prior to 2.2.7.SP1, prior to 2.0.36.SP1, prior to 2.2.9.Final and prior to 2.0.39.Final.
CVE-2022-38014 1 Microsoft 2 Azure Iot Edge For Linux, Windows Subsystem For Linux 2022-11-10 N/A 7.0 HIGH
Windows Subsystem for Linux (WSL2) Kernel Elevation of Privilege Vulnerability.
CVE-2022-44563 1 Huawei 2 Emui, Harmonyos 2022-11-10 N/A 5.9 MEDIUM
There is a race condition vulnerability in SD upgrade mode. Successful exploitation of this vulnerability may affect data confidentiality.
CVE-2021-43980 2 Apache, Debian 2 Tomcat, Debian Linux 2022-11-09 N/A 3.7 LOW
The simplified implementation of blocking reads and writes introduced in Tomcat 10 and back-ported to Tomcat 9.0.47 onwards exposed a long standing (but extremely hard to trigger) concurrency bug in Apache Tomcat 10.1.0 to 10.1.0-M12, 10.0.0-M1 to 10.0.18, 9.0.0-M1 to 9.0.60 and 8.5.0 to 8.5.77 that could cause client connections to share an Http11Processor instance resulting in responses, or part responses, to be received by the wrong client.
CVE-2022-32895 1 Apple 1 Macos 2022-11-03 N/A 4.7 MEDIUM
A race condition was addressed with improved state handling. This issue is fixed in macOS Ventura 13. An app may be able to modify protected parts of the file system.
CVE-2022-42806 1 Apple 3 Ipados, Iphone Os, Macos 2022-11-02 N/A 7.0 HIGH
A race condition was addressed with improved locking. This issue is fixed in iOS 16.1 and iPadOS 16, macOS Ventura 13. An app may be able to execute arbitrary code with kernel privileges.
CVE-2022-42803 1 Apple 5 Ipados, Iphone Os, Macos and 2 more 2022-11-02 N/A 7.0 HIGH
A race condition was addressed with improved locking. This issue is fixed in tvOS 16.1, iOS 15.7.1 and iPadOS 15.7.1, macOS Ventura 13, watchOS 9.1, iOS 16.1 and iPadOS 16, macOS Monterey 12.6.1. An app may be able to execute arbitrary code with kernel privileges.